欢迎访问专升本社区
[注册]
自考专区

QQ社群

微信社群

微信扫码咨询
《服务协议》《隐私政策》
注册
密码或短信登录点这里
微信扫码登录/注册
其他方式登录
手机注册
扫码登录点这里
其他方式登录
手机注册
用户协议

专升本社区是一家为广大升本学子提供全国专升本政策,考试大纲,备考信息,报名考试时间,考试科目,复习资料,升本专业,升本院校等信息的资讯类网站。本网站为了保护网络信息安全,保障用户合法权益的同时为广大学员提供更优质的服务,将严格遵循合法、正当、必要的原则,收集您的个人信息和需求。承诺在本网站中收集到的您个人信息将受到严格的保护,为了使您能得到优质的服务,仅限于向专升本社区网站总部及您所在地区分校教务人员提供您的个人信息(包括姓名、联系电话、就读院校),并承诺将严格保护,不得向任何第三方泄露或披露,并确保不对您造成骚扰。 如您选择线上咨询平台上的升本在线服务,即表示您完全知晓并同意上述专升本社区网站收集、使用信息的目的和方式和范围,请填写您的个人信息;如您不同意,您可选择退出本网页,选择其他方式了解升本在线服务。

本网站收集、使用用户信息规则: 


1、本网站收集用户信息仅限于结合教育考试院政策,根据所在地区不同,为用户提供高效优质的服务。


2、本网站工作人员对在业务活动中收集的公民个人信息将严格保密,不向与本机构无关的任何他人提供用户的个人信息。


3、本网站已经并将采取最新的技术措施和其他必要措施,确保信息安全,防止在业务活动中收集的公民个人电子信息泄露、毁损、丢失。


4、本网站加强对机构工作人员对个人信息使用权限的管理,发现违规泄露、散布用户个人信息的,将立即停止传播该信息,并对工作人员按规定进行处罚。


5、用户如发现泄露个人身份、散布个人隐私等侵害其合法权益的网络信息,有权要求本机构删除有关信息或者采取其他必要措施予以制止。


 


免责声明:


1、本网站所刊载的各类形式(包括但不仅限于文字、图片、图表)的作品仅限于为广大学员提供更多信息及更优质的服务,仅供用户参考。对于访问者根据本网站提供的信息所做出的一切行为,除非另有明确的书面承诺文件,否则本网站不承担任何形式的责任。


2、本网站及其雇员一概无需以任何方式就任何信息传递或传送的失误、不准确或错误对用户或任何其他人士负任何直接或间接的责任。


3、凡以任何方式登录本网站或直接、间接使用本网站资料者,视为自愿接受本网站声明的约束。


4、本网站若无意中侵犯了哪个媒体或个人的知识产权,请致函或来电告之,本网站将立即给予删除等相关处理,全国统一来电400-023-1785;全国统一邮箱kf@hlsjy.com。


5、以上声明内容的最终解释权归专升本社区网站所有。

隐私政策

感谢您信任并使用专升本社区的服务!我们根据最新的法律法规、监管政策要求,更新了《用户隐私政策》。 本次更新进一步明确了我们如何收集和使用您的信息以及如何存储您的信息。请您仔细阅读并充分理解以下条款,特别提醒您应留意本《用户隐私政策》中加粗形式的条款内容。如果您不同意本《用户隐私政策》,您可能无法正常使用我们的产品、服务。

希望您仔细阅读并充分理解本《用户隐私政策》,了解在使用我们的产品和服务时,我们如何收集、使用、存储、处理和保护这些信息,以及我们为您提供的了解、控制这些信息的方式,以便您更好地了解我们的产品和服务并作出适当地选择。


如您使用或继续使用我们的产品和服务,表示您同意或/和已征得您的父母或监护人的同意(若您为未成年人)按照本《用户隐私政策》收集、使用、储存、处理和保护您的信息。


本《用户隐私政策》主要向您说明如下信息:


1. 我们如何收集和使用您的信息


2. 我们如何存储您的信息


3. 我们如何使用Cookie以及同类技术


4. 我们可能向您发送的信息


5. 您如何了解和控制自己的用户信息


6. 我们如何保护您的个人信息


7. 本《用户隐私政策》的适用范围


8. 本《用户隐私政策》如何更新


9. 如何与我们联系


 


1. 我们如何收集和使用您的信息


1.1 我们将根据合法、正当、必要的原则,按照如下方式收集您在使用服务时主动提供的或因为使用服务而产生的信息,用以向您提供服务、优化我们的服务以及保障您的帐户安全。


1.2 您在注册、登录时提供的个人信息及我们的使用方式:


(1) 如您用其他方式注册、登录专升本社区相关产品时,我们会收集手机号码、密码。如您仅需浏览、搜索等功能,您不需要注册或登录,亦无需提供以上信息。如您不提供手机号码,将无法使用我们的服务。


(2) 如您以第三方帐号(如微信等帐号)登录专升本社区相关产品时,我们会收集您第三方帐号的个人信息(包括头像、昵称及您提供的其他信息),您可以在关联登录页面选择是否授权或新建个人信息。 我们和第三方将以去标识化的方式验证,这个过程中我们收集到的验证信息除前述头像、昵称及您提供其他信息外,无法识别特定个人身份的信息。我们需要您确认通过第三方帐号登录前已经在第三方完成实名认证。如您不同意第三方帐号登录,将无法使用第三方帐号登录验证功能,但不影响您使用我们的其他服务。


(3) 我们收集手机号码、微信等帐号是用于为您提供帐号登录服务以及保障您的帐号安全。


1.3 您在产品或服务中主动提供的信息及我们的使用方式:


(1) 如您在个人资料编辑时提供的昵称、头像、性别、学校、地区、报考城市、考试类型、真实姓名、电子邮件、个人简介。这些资料将帮助我们更好地了解您并为您提供更优质的服务。


(2) 如您使用观看视频、直播、试题纠错、使用反馈、课程分享、学习笔记时,我们会收集您通过前述服务所上传或下载的信息,这类信息包括搜索关键字、发布和回复的评论、文字、标签。


(3) 如您使用客服等用户响应功能时,您可能需要提供您的手机号码、QQ号码或您向我们主动提供的其他联系方式,我们收集这些信息是为了核验您的用户身份信息、调查事实、帮助您解决问题,如您拒绝提供可能导致您无法使用我们的客服等用户响应功能。我们亦会保存您与我们的客服沟通信息和回复内容。


1.4 我们在您使用我们的产品和服务时获取的信息及我们的使用方式:


1.4.1 为保障您正常使用我们的产品和服务,维护我们产品和服务的正常运行,改善及优化您的服务体验并保障您的帐号安全,我们会收集您的下述信息:


(1) 日志信息:当您使用我们的产品和服务时,我们可能会自动收集相关信息并存储为服务日志信息。如登录帐号、IP地址、搜索记录、收听观看记录、网页浏览记录、服务故障信息等。


1.5 我们会根据以上在您使用产品或服务时获取的信息开展数据分析和研究,改进我们的内容布局和推广效果,为商业决策提供产品或服务支持。


1.6 其他用户分享的信息中含有您的信息及我们的使用方式


如其他用户发布的笔记、回复中可能包含您的信息。我们将无法修改其他用户的信息,如实展示可能包含您的信息。如您认为侵犯您的个人信息,请您通过下述第11条投诉方式和联系方式联系我们进行处理。


1.7 请您理解,我们向您提供的功能和服务是不断更新和发展的,如果某一功能或服务未在前述说明中且收集了您的个人信息,我们会通过页面提示、交互流程、网站公告等方式另行向您说明信息收集的内容、范围和目的,以征得您的同意。


1.8 关于个人信息和个人敏感的提示


上述的个人信息和个人敏感信息,我们会尽最大努力保护您的信息,若您不提供该信息,您可能无法正常使用我们的相关服务,但不影响您使用服务中的其他功能。若您主动提供您的个人信息和个人敏感信息,即表示您同意我们按本《隐私政策》所述目的和方式使用您的个人信息和个人敏感信息。


 


2. 我们如何存储您的信息


2.1 存储信息的地点


我们遵守法律法规的规定,将境内收集的用户个人信息存储于境内。目前我们不会跨境传输或存储您的个人信息。将来如需跨境传输或存储的,我们会向您告知信息出境的目的、接收方、安全保证措施和安全风险,并征得您的同意。


2.2 存储信息的期限


一般而言,我们仅为实现目的所必需的最短时间内或法律法规规定的条件下存储您的个人信息,并在超出个人信息保存期限后对您的个人信息进行删除或匿名化处理。但在下列情况下,我们有可能在遵守法律法规规定的前提下,更改个人信息的存储时间:


(1) 为遵守相关法律法规的规定;


(2) 为遵守法院判决、裁定或其他法律程序的规定;


(3) 为遵守相关政府机关或法定授权组织的要求;


(4) 为执行相关服务协议或本《隐私政策》、维护社会公共利益,为保护们的客户、我们或我们的关联公司、其他用户或雇员的人身财产安全或其他合法权益所合理必需的用途。


(5) 其他法律法规规定或您另行授权同意的情形。


2.3 存储信息的方式


我们会通过安全技术保护措施存储您的信息,包括本地存储、数据缓存、数据库和服务器日志。


2.4 当我们的产品或服务发生停止运营的情形时,我们将采取合适的方式(例如推送通知、站内信、公告等形式)通知您,并在合理的期限内删除或匿名化处理您的个人信息。


 


3. 我们如何使用Cookie以及同类技术


Cookie 和同类技术是互联网中普遍使用的技术。当您使用专升本社区及相关服务时,我们可能会使用相关技术收集您的信息。我们使用 Cookie 和同类技术主要为了实现以下功能或服务:


3.1 保障产品与服务的安全、高效运转:我们可能会设置认证与保障安全性的 Cookie 或匿名标识符,使我们确认您是否安全登录服务,或者是否遇到盗用、欺诈及其他不法行为。这些技术还会帮助我们改进服务效率,提升登录和响应速度。


3.2 帮助您获得更轻松的访问体验:使用此类技术可以帮助您省去重复您填写个人信息、输入搜索内容的步骤和流程(例如:表单填写)。


您可以通过浏览器设置拒绝或管理Cookie以及同类技术的使用。但请注意,如果停用Cookie,您可能无法享受最佳的服务体验,某些服务也可能无法正常使用。


 


4. 我们可能向您发送的信息


4.1 信息推送


您在使用我们的产品和服务时,我们可能向您发送提醒、声音和图标标记,以及电子邮件、短信等其他方式的推送通知。 您可以在设备的设置等相关页面选择取消。


4.2 与产品和服务有关的公告


我们可能在必要时向您发出与产品和服务有关的公告。 您可能无法取消这些与产品和服务有关、性质不属于广告的公告。


 


5. 您如何了解和控制自己的用户信息


5.1 我们将尽一切可能采取适当的技术手段,保证您可以了解、更新和更正自己的注册信息或使用我们的服务时提供的其他用户信息。在了解、更新、更正和删除前述信息时,我们可能会要求您进行身份验证,以保障帐户安全。一般情况下,您可随时修改自己提交的信息,但出于安全性和身份识别的考虑,您可能无法修改注册时提供的某些初始注册信息、验证信息及认证信息。


5.2 如您不希望您的部分信息被我们获取,您可以通过关闭设备权限的方式停止我们获得您的个人信息。您开启下述权限即代表您授权我们可以收集和使用该权限相应的个人信息来为您提供对应服务,您关闭前述权限即代表您取消了授权,我们将不再基于对应权限继续收集和使用相关个人信息,也无法为您提供该权限所对应的服务,但不影响您使用我们的其他服务。但是,您关闭权限的决定不会影响我们此前基于您的授权所进行的信息收集及使用,但您可以通过第5.3条内容删除有关记录:


5.3 在您使用专升本社区期间,为了让您更便捷地控制您的个人信息,我们在产品和服务设计中为您提供了相应的操作设置,您可参考下面的指引进行操作。


5.3.1 访问个人信息:


您可以在【个人主页】-【头像】-【编辑资料】进行查询、访问、更正您的头像、昵称、性别、生日、地区、个性签名、兴趣爱好。


 


6. 我们如何保护您的个人信息


6.1 为保障您的个人信息安全,我们在合理的安全水平内使用各种安全保护措施来保障您的信息,防止数据遭到未经授权访问、公开披露、使用、修改、损坏或丢失。例如,我们使用加密技术(如SSL)、匿名化处理等手段来保护您的个人信息。


6.2 我们建立专门的管理制度、审批流程和组织确保信息安全。例如,我们严格限制访问信息的人员范围,要求他们遵守保密义务,并进行审查。


6.3 我们鼓励我们的工作人员学习信息安全知识、提高个人信息安全保护意识,并定期或不定期对我们的工作人员进行信息安全培训。


6.4 若不幸发生个人信息泄露等安全事件,按照法律法规要求,我们会启动应急预案,阻止安全事件扩大,并及时告知您:安全事件的基本情况和可能的影响、我们已采取或将要采取的处置措施、您可自主防范和降低风险的建议、对您的补救措施等。我们将及时将事件相关情况以邮件、信函、电话、推送通知等方式告知您,难以逐一告知用户时,我们会采取合理、有效的方式发布公告。同时,我们还将按照监管部门要求,主动上报个人信息安全事件的处置情况。


6.5 互联网环境并非百分之百安全,当出现下列非因我们过错而对您的信息造成泄露及由此造成的损害结果,我们无需承担任何责任:


(1) 任何由于黑客攻击、计算机病毒侵入或发作、因政府管制而造成的暂时性关闭等影响网络正常经营之不可抗力而造成的个人资料泄露、丢失、被盗用或被篡改等。


(2) 在使用专升本社区的过程中链接到其它网站或因接受来自第三方的服务所造成之个人资料泄露及由此而导致的任何法律争议和后果。


(3)如您在使用专升本社区(例如笔记、评论等)的过程中主动公开、上传、发布或向第三方提供您的个人信息的,其他用户可能会收集您的个人信息。


 


7. 本《用户隐私政策》的适用范围


7.1 我们的所有产品和服务均适用本《用户隐私政策》。但某些产品或服务可能会有其特定的隐私政策适用条款,该特定隐私政策适用条款更具体地说明我们在该产品或服务中如何处理您的个人信息。除非有特殊说明,若本《用户隐私政策》与该特定产品或服务的隐私政策适用条款有不一致之处,请以该特定隐私政策适用条款为准。


7.2 请您注意,本《用户隐私政策》不适用由其他公司或个人提供的产品或服务。如果您使用第三方的产品或服务,须受该第三方的隐私政策而非本《用户隐私政策》)约束,您需要仔细阅读其政策内容。


7.3 本《用户隐私政策》为《用户服务协议》及相关协议的重要组成部分,本《用户隐私政策》内的名词定义参照《用户用户服务协议》,适用于专升本社区相关服务。


 


8. 本《用户隐私政策》如何更新


8.1 随着我们的服务范围扩大,我们可能适时更新本《用户隐私政策》的条款,更新内容构成本《用户隐私政策》的一部分。如更新后的《用户隐私政策》导致您的权利发生实质改变,我们将在更新前通过显著位置提示或以其他方式通知您,为避免您不能及时获知更新,请您经常阅读本《用户隐私政策》。


8.2 无论何种方式,若您继续使用我们的服务,即表示同意受更新后的《用户隐私政策》约束。


8.3 更新后的《用户隐私政策》将以更新日期为生效日期,并取代之前的《用户隐私政策》。


 


9. 如何与我们联系


若您对本《用户隐私政策》有问题、意见、建议,或者与用户个人信息安全相关的投诉、举报,您可以通过全国统一来电400-023-1785;全国统一邮箱kf@hlsjy.com等方式与我们进行联系,我们将在收到函件并验证您的用户身份后尽快予以回复。

专升本社区 > 自考资料 > 上饶师范学院2018年专升本考试大纲——《数学分析》
上饶师范学院2018年专升本考试大纲——《数学分析》
来源:专升本社区
浏览次数:3315
收藏次数:0
发布时间:2021-03-01 10:18
我要收藏
摘要
上饶师范学院2018年专升本考试大纲——《数学分析》

01 《数学分析》考试大纲

一、总要求

考生应按本大纲的要求,了解或理解数学分析中的函数、极限和连续、实数的基本理论、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具备有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。

本大纲对内容的要求由低到高,对概念和理论分为了解理解两个层次;对方法和运用分为掌握、和熟练掌握三个层次。

二、教材

《数学分析》(上、下),华东师范大学数学系编(第三版),高等教育出版社

三、内容

一、函数、极限和连续

1)函数

1.知识范围

1)函数的概念

函数的定义 函数的表示法 分段函数

2)函数的简单性质

单调性` 奇偶性 有界性 周期性

3)反函数

反函数的定义 反函数的图像

4)函数的四则运算与复合运算

5)基本初等函数

幂函数 指数函数 对数函数 三角函数 反三角函数

6)初等函数

2.要求

1)理解函数的概念。学会函数的定义域、表达式及函数值。会求分段函数的定义域、函数值,并会作出简单的分段函数的图像。

2)理解和掌握函数的单调性、奇偶性、有界性、周期性,会判断函数的类型。

3)理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

4)掌握基本初等函数的简单性质及图像。

5)掌握初等函数的概念。

6)会建立简单实际问题的函数关系式。

(二)极限

1.知识范围

1)数列极限的概念

数列、数列极限的ε-N定义

2)数列极限的性质

唯一性,有界性,四则运算定理,夹逼定理,单调有界定理

3)函数极限的概念

函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷时函数的极限,函数的几何意义

4)函数极限的定理

唯一性定理,夹逼定理,四则运算定理

5)无穷小量和无穷大量

无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量的阶的比较

6)两个重要的极限

2.要求

1)理解极限的概念,能根据极限的概念分析函数的变化趋势。会求函数在一点处的左、右极限,理解函数在一点处极限存在的充分必要条件

2)理解极限的有关性质,掌握极限的四则运算法则

3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量的阶的比较。会运用等价无穷小量代换求极限。

4)熟练掌握用两个重要的极限求极限的方法

(三)连续

1.知识范围

1)函数连续的概念

函数在一点处连续的定义,左连续与右连续,函数在一点处连续的充分必要条件,函数的间断点及其分类

2)函数在一点处连续的性质

连续函数的四则运算,复合函数连续性,反函数的连续性

3)闭区间上连续函数的性质

有界性定理,最大值与最小值定理,介值性定理

4)初等函数的连续性

2.要求

1)理解函数在一点连续与间断的概念,掌握判断函数在一点的连续性,理解函数在一点连续与极限存在的关系

2)会求函数的间断点及确定其类型

3)掌握在闭区间上连续函数的性质,会运用介值定理推证一些简单命题

4)理解初等函数在其定义区间上的连续性,并会利用连续性求极限

二、一元函数微分学

(一)导数与微分

1.知识范围

1)导数的概念

导数的定义,左导数,右导数,导数的几何意义与物理意义,可导与连续的关系

2)求导法则与导数的基本公式

导数的四则运算,反函数的导数,导数的基本公式

3)求导方法

复合函数的求导法,隐函数的求导法,对数求导法,由参数方程确定的函数的求导法,求分段函数的导数

4)高阶导数的概念

高阶导数的定义及计算

5)微分

微分的定义,微分与导数的关系,微分法则,一阶微分形式的不变性

2.要求

1)理解导数的概念及其几何意义,可导性与连续性的关系,会运用定义求函数在一点处的导数

2)会求曲线上一点处的切线方程与法线方程

3)熟练掌握导数的基本公式、四则运算法则及复合函数和反函数求导方法

4)掌握隐函数的求导法、对数求导法以及由参数方程确定的函数的求导方法,会求分段函数的导数

5)理解高阶导数的概念,会求简单函数的n阶导数

6)理解函数和微分概念,掌握微分法则,掌握微分与可导的关系,会求一阶微分

(二)中值定理及导数的应用

1.知识范围

1)中值定理

罗尔中值定理 拉格朗日中值定理 柯西中值定理

2)洛必达法则

3)函数增减性的判定法

4)函数的极值与极值点 最大值与最小值

5)曲线的凹凸性、拐点

6)曲线的渐近线

7)泰勒公式

2.要求

1)理解罗尔中值定理、格朗日中值定理、柯西中值定理它们的几何意义,会用它们证明根的存在性和简单的不等式,

2)熟练掌握用洛必达法则求”“”“”“”“”“型未定式的极限的方法

3)熟练掌握利用导数判定函数单调性及求函数单调增、减区间的方法,会用函数的单调性证明简单不等式

4)理解函数极值的概念。掌握求函数的极值和最值的方法,并会解简单的应用问题

5)会判断曲线的凹凸性,会求曲线的拐点

6)会作简单函数的图形

7)理解函数的泰勒公式,泰勒公式的拉格朗日型余项,掌握几个基本初等函数的泰勒公式

三、一元函数积分学

(一)不定积分

1.知识范围

1)不定积分的概念

原函数与不定积分的定义 原函数存在定理 不定积分的性质

2)基本积分公式

3)换元积分法

第一换元法,第二换元法

4)分部积分法

5)一些简单的有理函数和可化为有理函数的积分

2.要求

1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在性定理

2)熟练掌握不定积分的基本公式

3)熟练掌握不定积分的第一换元法,掌握第二换元法

4)熟练掌握不定积分的分部积分法

5)会求简单有理函数的不定积分

(二)定积分

1.知识范围

1)定积分的概念

定积分的定义及几何意义,可积的必要条件和充分条件 可积函数类

2)定积分的性质

3)微积分学基本定理

4)换元积分法与分部积分法

5)泰勒公式的积分型余项

6)广义积分的概念 广义积分的收敛性判别法

7)定积分的应用

2.要求

1)理解定积分的概念及其几何意义,掌握定积分的积分和、上和、下和的概念,定积分可积的充分条件、必要条件和充要条件

2)掌握定积分的基本性质

3)掌握变上限定积分是变上限的函数,掌握对变上限定积分的求导方法

4)掌握牛顿---莱布尼茨公式

5)掌握定积分的换元积分法和分部积分法

6)理解无穷限广义积分和无界函数广义积分的概念及几何意义

7)掌握非负函数广义积分收敛性的比较判别法,了解阿贝尔和狄里克莱判别法

8)掌握定积分在几何计算平面图形的面积、旋转体的体积、曲线的弧长、旋转曲面的面积、和物理上计算压力、功、重心等简单应用

四、实数完备性理论的知识

1.知识范围

1)实数完备性的基本定理

2)闭区间上连续函数性质的证明

2.要求

1)了解实数系的构造理论

2)理解实数完备性定理的各个定理:区间套定理 柯西收敛准则,有限覆盖定理,聚点定理,确界原理,单调有界性定理和这些定理的等价性

3)理解闭区间上连续函数性质的证明

4)了解实数完备性定理在证明数学命题中的应用

五、多元函数微分学

(一)多元函数微分学

1.知识范围

1)多元函数

平面点集,上的完备性定理,多元函数的定义,二元函数的定义域,二元函数的几何意义,二元函数极限,累次极限,二元函数的连续性概念,有界闭区域上连续函数的性质

2)可微性,偏导数与全微分,偏导数,全微分的概念,可微性的几何意义与应用

3)复合函数的求导法则 复合函数的全微分

4)方向导数与梯度

5)高阶偏导数,中值定理和泰勒公式,极值问题

6)隐函数概念,隐函数存在性条件的分析,隐函数定理 隐函数的求导,隐函数组概念 隐函数组定理,反函数组与坐标变换

7)平面曲线的切线与法线 空间曲线的切线与法平面 曲面的切平面与法线

8)条件极值

2.要求

1)了解平面点集,上的完备性定理,多元函数的定义,二元函数的定义域,二元函数的几何意义,二元函数极限,累次极限,二元函数的连续性概念,有界闭区域上连续函数的性质

2)掌握偏导数、全微分的概念,可微性的几何意义与应用

3)熟练掌握一阶、二阶偏导数的计算,掌握复合函数偏导数和全微分的计算

4)掌握方向导数,梯度的计算,了解隐函数定理,掌握隐函数及隐函数组的的微分的计算

5)掌握平面曲线的切线与法线 空间曲线的切线与法平面 曲面的切平面与法线的方程的计算

6)了解二元函数泰勒公式,熟练掌握二元函数的无条件极值的计算,掌握条件极值的拉格朗日乘数法

六、多元函数积分学

1.知识范围

1)二重积分的概念,二重积分的可积条件,一般区域上的二重积分,二重积分的计算,二重积分的换元法,含参量积分的导数

2)三重积分的概念,化三重积分为累次积分,三重积分的换元法

3)重积分的应用,曲面的面积,重积分在物理学上的应用

4)第一型曲线积分和第一型曲面积分的概念,第一型曲线积分和第一型曲面积分的计算

5)第二型曲线积分和第二型曲面积分的概念,第二型曲线积分和第二型曲面积分的计算

6)格林公式,曲线积分与路径的无关性

7)高斯公式,斯托克斯公式

2.要求

1)了解二重积分的概念、二重积分的可积条件、一般区域上的二重积分,熟练掌握直角坐标系下二重积分的计算,掌握二重积分的换元法、含参量积分的导数

2)了解三重积分的概念,掌握直角坐标下化三重积分为累次积分

3)了解第一型曲线积分和第一型曲面积分的概念,掌握第一型曲线积分和第一型曲面积分的计算,了解第二型曲线积分和第二型曲面积分的概念,掌握第二型曲线积分和第二型曲面积分的计算

4)了解格林公式,曲线积分与路径的无关性

5)了解高斯公式,知道斯托克斯公式

七、无穷级数

(一)数项级数

1.知识范围

1)数项级数的概念,级数的收敛与发散,级数的基本知识,级数收敛的必要条件

2)正项级数敛散性判别法,比较判别法,比值判别法

3)任意项级数,交错级数,绝对收敛,条件收敛,莱布尼兹判别法

2.要求

1)了解数项级数的概念,级数的收敛与发散,级数的基本知识,级数收敛的必要条件

2)熟练掌握正项级数敛散性的比较判别法和比值判别法

3)了解任意项级数、交错级数、绝对收敛、条件收敛的概念

4)掌握交错级数收敛的莱布尼兹判别法.

(三)幂级数

1.知识范围

1)幂级数收敛区间

2)幂级数的性质

3)幂级数的运算

4)泰勒级数与初等函数的幂级数展开式

2.要求

1)了解幂级数、幂级数的收敛半径、收敛区间的概念

2)了解幂级数在收敛区间内的性质(和、差、逐项求导、逐项积分)

3)掌握幂级数的收敛半径、收敛区间的的求法

4)会运用基本初等函数的麦克劳林公式将一些简单的初等函数展开为幂级数


免责声明: 本站所提供真题均来源于网友提供或网络搜索,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。
推荐阅读